Metric Tracking of Launch Vehicles, Phase I

Completed Technology Project (2010 - 2010)

Project Introduction

NASA needs reliable, accurate navigation for launch vehicles and other missions. GPS is the best world-wide navigation system, but operates at low power making it susceptible to intentional and unintentional interference. Toyon proposes to develop an anti-jam front-end that uses Space-Time Adaptive Processing to suppress interference, and implement it in a compact, low-cost package. This design will work with any existing GPS receiver, although higher performance can be achieved by tightly integrating a GPS receiver module with the anti-jam functionality. Toyon's Miniature Integrated Direction-finding Attitude-determining Anti-jam System (MIDAAS(TM)) obtains position, velocity, attitude, and time (PVAT) measurements directly from GPS signals. The ultra-tightly coupled (UTC) navigation architecture fuses all sensor data. Integrating this system with the anti-jam module makes the system inherently robust to interference and the resulting position and attitude estimate more accurate.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Toyon Research Corporation	Lead Organization	Industry	Goleta, California
• Kennedy Space Center(KSC)	Supporting Organization	NASA Center	Kennedy Space Center, Florida

Metric Tracking of Launch Vehicles, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions	2	
Organizational Responsibility	2	
Project Management	2	
Technology Maturity (TRL)	2	
Technology Areas	3	
Target Destinations		

Small Business Innovation Research/Small Business Tech Transfer

Metric Tracking of Launch Vehicles, Phase I

Completed Technology Project (2010 - 2010)

Primary U.S. Work Locations		
California	Florida	

Project Transitions

0

January 2010: Project Start

July 2010: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139211)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Toyon Research Corporation

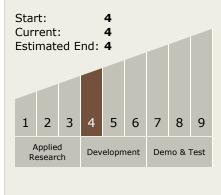
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

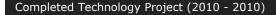
Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Roger Helkey


Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Metric Tracking of Launch Vehicles, Phase I

Technology Areas

Primary:

- TX13 Ground, Test, and Surface Systems
 TX13.1 Infrastructure Optimization
 TX13.1.2
 - └─ TX13.1.2 Launch/Test/Ops Site Management

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

